解:
记h(x)=(x-1)(x-2)...(x-n),g(x)=(x+1)(x+2)...(x+n),则f(x)=h(x)/g(x),f'(x)=(g(x)*h'(x)-h(x)*g'(x))/(g(x))^2.
h'(x)=(x-1)'(x-2)(x-3)...(x-n)+(x-1)(x-2)'(x-3)...(x-n)+...+(x-1)(x-2)...(x-n)'
=(x-2)(x-3)...(x-n)+(x-1)(x-3)(x-4)...(x-n)+...+(x-1)(x-2)...(x-n+1).
故h'(1)=(1-2)(1-3)...(1-n)+0+0+...+0=(-1)^(n-1)*(n-1)!,
而h(1)=0,g(1)=(1+1)(1+2)...(1+n)=(n+1)!,
故f'(1)=(g(1)*h'(1)-0)/(g(1))^2=h'(1)/g(1)=(-1)^(n-1)*(n-1)!/(n+1)!=(-1)^(n-1)/(n(n+1)).