同底数幂的乘法是什么?

2025-12-13 00:46:34
推荐回答(2个)
回答1:

1、同底数幂相乘,底数不变,指数相加:a^m×a^n=a^(m+n))(m、n都是整数)。即幂的乘方,底数不变,指数相加。

2、同底数幂是指底数相同的幂。

除法

同底数幂相除,底数不变,指数相减:a^m÷a^n=a^(m-n)(m、n都是整数且a≠0)。

如a^5÷a^2=a^(5-2)=a^3,说明:a^m是a的m次方,a^n是a的n次方,a^(m+n)是a的m+n次方。

扩展资料:

性质

一般形式

负整数指数幂的一般形式是a^(-n)(a≠0,n为正整数)。

意义

负整数指数幂的意义为:

任何不为零的数的-n(n为正整数)次幂等于这个数n次幂的倒数,即a^(-n)=1/(a^n)。

回答2:

1. 同底数幂相乘,底数不变,指数相加。

2. 幂的乘方,底数不变,指数相乘。

3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

4.分式乘方, 分子分母各自乘方。

5、对于乘除和乘方的混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。

6、am·an=am+n(m,n是正整数);(am)n=amn(m,n是正整数);(ab)n=anbn(n是正整数);am÷an=am-n(a≠0,m,n是正整数,m>n);a0=1(a≠0)。

扩展资料:

同底数幂的乘法的注意事项:

1、先弄清楚底数、指数、幂这三个基本概念的涵义。

2、前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。

3、指数都是正整数

4、这个法则可以推广到三个或三个以上的同底数幂相乘,即am·an·ap....=am+n+p+... (m, n, p都是正整数)。

5、不要与整式加法相混淆。乘法是只要求底数相同则可用法则计算,即底数不变指数相加。