(a+b+c)(1/a+1/b+1/c)
=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
≥3+2√(a/b×b/a)+2√(a/c×c/a)+2√(b/c×c/b)
=3+2+2+2
=9
选:C,大于等于9
希望可以帮到你
祝学习快乐
O(∩_∩)O~
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+(b+c)/a+1(a+c)/b+1(a+b)/c
=3+b/c+c/b+a/c+c/a+a/b+b/a
>=3+2+2+2
=9
选C
C,把公式展开,用a^2+b^2>=2ab可得
直接柯西不等式 C
答案:C大于等于9