I = ∫<-1, 1>(x^2+1)arctanxdx - ∫<-1, 1>xarctanxdx
= 0 - 2∫<0, 1>xarctanxdx = -∫<0, 1>arctanxd(x^2)
= -[x^2arctanx]<0, 1> + ∫<0, 1>[x^2/(1+x^2)]dx
= -π/4 + ∫<0, 1>[1-1/(1+x^2)]dx
= -π/4 + [x-arctanx]<0, 1> = -π/4+1-π/4 = 1-π/2
原式=∫(-1,1)(x²+1)arctanxdx
-∫(-1,1)xarctanxdx
=-2∫(0,1)xarctanxdx
=-∫(0,1)arctanxd(x²)
=-x²arctanx|(0,1)+∫(0,1)x²dx/(1+x²)
=-π/4+1-arctanx|(0,1)
=1-π/2